
German Journal of Artificial Intelligence manuscript No.
(will be inserted by the editor)

Learning by enhancing half-baked AI projects

Ken Kahn · Niall Winters

July 2020

Abstract We have developed thirty sample artificial

intelligence programs in a form suitable for enhance-

ment by non-expert programmers. The projects are im-

plemented in the Snap! blocks language and can be run

in modern web browsers. These projects have been de-

signed to be modifiable by school students. The projects

involve speech synthesis, speech and image recognition,

natural language processing, and deep machine learn-

ing. They illustrate a variety of AI capabilities, con-

cepts, and techniques. The intent is to provide stu-

dents with hands-on experience with AI programming

so they come to understand the possibilities, problems,

strengths, and weaknesses of AI today.

Keywords Project-based learning · Blocks pro-

gramming · Snap! · Artificial Intelligence · Machine

Learning

1 Declarations

1.1 Funding

The eCraft2Learn project is funded by the European

Union’s Horizon 2020 Coordination and Research and

Innovation Action under Grant Agreement No 731345.

The Go Girl project is funded by the University

of Oxford IT Innovation Seed Fund and has received

subsequent funding from Goldman Sachs Gives.

1.2 Conflicts of interest/Competing interests

None

Department of Education University of Oxford 15 Norham
Gardens Oxford, OX2 6PY E-mail: toontalk@gmail.com ·
niall.winters@education.ox.ac.uk

1.3 Availability of data and material (data

transparency)

https://github.com/ecraft2learn/ai

1.4 Code availability

https://github.com/ecraft2learn/ai

2 Introduction

One very effective way of acquiring a deep understand-

ing and appreciation of AI is by building AI programs.

However, building AI programs can be difficult and

time-consuming. These shortcomings can be significantly

reduced, however, by providing learners with high-level

building blocks and associated guides [6]. Here we present

an additional way to enable learners to experience the

construction of AI programs despite a lack of experience

and a limited amount of time.

The idea is to provide a range of half-baked or min-

imal AI programs designed to be enhanced by learners

[7]. As part of the eCraft2Learn project [5] and sub-

sequently, we developed several such projects. All the

projects were built upon the Snap! [3] programming

blocks designed to support AI programming [6]. The

programs illustrate several different AI concepts, tech-

niques, and capabilities. While each one is able to per-

form a simple task or two, they can be enhanced by

non-expert programmers to be more capable. In doing

so, we expect that by engaging in how the programs

work to improve them, the students will learn about

the abilities, strengths, and weaknesses of AI today. At

least one or two layers of technology underlying AI pro-

grams will stop being magical black boxes to the stu-



2 Ken Kahn, Niall Winters

dents. We are currently at an early stage of evaluating

these expectations with empirical studies.

Some of the projects illustrate ways of creatively

using speech synthesis, speech and image recognition,

natural language processing, and deep machine learn-

ing. Others explore innovative ways of applying pre-

trained deep learning models to tasks. The variety of

projects maximises the chance that a project will fit

with a student’s interests and goals.

3 Some half-baked projects

The complete list of thirty projects can be found at

the eCraft2Learn AI home page [4]. Descriptions of a

sample of these projects follows.

3.1 Speech commands

We have developed a variety of projects that illustrate

using speech to control an application. Typically these

commands control the movement of graphical sprites.

The simplest projects respond to single words or fixed

phrases. One project creates the illusion that one can

give full sentence commands. It works by searching for a

keyword and a number somewhere in the sentence. E.g.

“Could you please go forward 25 steps” is interpreted as

“MOVE 25”. Several of these projects also use speech

synthesis to support a pure voice interface.

The mechanism of speech recognition varies between

projects. One project uses the Web Speech API [9] sup-

ported by several browsers. It is the most reliable and

flexible method for recognising speech. This reliance
upon a web service, however, prevents the recognition

functionality from being more than a black box to stu-

dents. Furthermore, it requires a fast reliable Internet

connection and raises privacy issues. Another project

instead relies upon Snap! blocks that we provide for

training the system to recognise a handful of words. Yet

another takes advantage of Google’s Teachable Machine

[2] where students can create and train audio recogni-

tion models that are then imported into their Snap!

Projects. Both of these approaches rely only upon the

student’s computer to train and run the model and

hence protect their privacy.

When students train their own speech recognition

models they are quickly exposed to the imperfections

of recognition. If trained with samples only from one

person it may not be very reliable with other speak-

ers. They can discover that with more and varied sam-

ples the recogniser becomes more robust. If they in-

crease the number of words their models can recognise

they will discover the system’s accuracy drops. Working

with their trained model they become exposed to the

notion of “confidence scores” that indicate the relative

certainty of correctly classifying audio input. Finally,

they need not limit their projects to speech but can

explore the recognition of different sounds.

3.2 Interactive sentence and story generators

Two projects use speech input and output to inter-

actively fill-out a sentence or story template. Expe-

rience with older textual versions of this is that stu-

dents discover that without careful attention to parts

of speech and grammar rules ungrammatical sentences

result. These projects give students first-hand experi-

ence with the construction of voice-only interfaces.

3.3 Training a system to distinguish between different

categories of images

Projects include a rock, paper, and scissors game and a

drawing program that is driven by gestures. As with the

speech recognition projects, the students encounter the

need for a sufficient number of varied inputs for trained

models to be accurate enough for their projects. They

may acquire some degree of understanding how popular

apps that recognise people, objects, and gestures work

internally. And reasons why these apps make mistakes

or exhibit biases.

3.4 Using body pose and segmentation to provide

augmented reality apps

This includes a project that detects if someone is touch-

ing his or her face and another where virtual balloons

are popped with real video hands. These projects may

contribute to an understanding of how gesture-based

games such as those that use Microsoft’s Kinect [11]

work and how filters are added to images in apps such

as Instagram and Snapchat.

3.5 An app that generalises mathematical

relationships based on examples

This is the simplest of the projects that rely upon cre-

ating, training and evaluating deep neural networks.

Unlike projects that rely upon real-world data the goal

here is to build a trained model that can approximate

a mathematical relationship as simple as doubling or

the more challenging square root. While enhancing this

project students may learn the need for larger and deeper



Learning by enhancing half-baked AI projects 3

models for certain kinds of relationships. And how the

number of samples and training cycles affects the qual-

ity of the predictions. Students may be surprised to

discover that neural networks can quickly learn to ap-

proximate very well a relationship like doubling and yet

fail to produce exact outputs.

3.6 A program that learns to play better Tic Tac Toe

This app is an example of how a neural network can

be created, trained, and then used to guide game play.

Learning to play a game typically involves more ad-

vanced machine learning methods such as deep rein-

forcement learning. As a much simpler alternative we

provide a framework where the training is in order to

predict the probabilities of winning given the current

board for each possible move. One can engage with

fundamental concepts such as the trade-off between ex-

ploiting one’s current knowledge and exploring new things

to increase one’s knowledge. This project also illustrates

issues in how to encode something like a game board

into a list of numbers a neural network can process.

One can learn the strengths and weaknesses of learning

from self-play.

Note that by providing students with a functioning

Tic Tac Toe implementation students can focus their

energies and attention on getting the computer to play

it well.

3.7 An app to predict how one rates abstract art

It uses deep machine learning to predict how a user will

rate randomly generated images. Each image is gener-

ated from a dozen random numbers and the program

learns to associate lists of image generating numbers

with user provided ratings. The trained model can then

be used to “recommend” new images similar to how

many familiar recommender systems work.

3.8 Three very different ways to create a question

answering app

One project fetches answers from web services, another

extracts answers from passages of text, and the third

one is trained to recognise paraphrases of questions

with known answers. Experience enhancing any of them

should help demystify conversational agents such as

Alexa and Siri. Exploring three approaches to question

answering should reveal their different strengths and

weaknesses.

3.9 An app that learns to determine how much

confidence is revealed in a text passage

This is an example of emotion detection that relies upon

sentence encoding. This simple example of sentiment

analysis can be revised by students to categorise other

sentiments such as worry, fear, optimism, etc.

3.10 An app that learns to give names to random

colours

This app provides a simple example of a categorical

deep learning classifier. Given three numbers correspond-

ing to red, green, and blue it tries to match it to one

of the colour names it was trained with. Students can

learn how the number of colour names, number of sam-

ples, model architecture, and training regime influence

accuracy.

3.11 An app that transfers the styles of famous artists

to new images

A fun example of combining the learned style of an

artist with a new image. It provides an example of AI

generated art by mashing up two different kinds of in-

puts in a high-level manner.

3.12 Word guessing games that rely upon word

embeddings

Word embeddings map words into a high-dimensional

space (300 in our implementation). Words that are closely

related are close in this space and unrelated words are

far apart. Here a very simple game uses word embed-

dings to provide clues to a player trying to guess a word.

This and other uses of word and sentence embeddings

expose students to the idea of distributed meanings.

Other projects could be created to illustrate very differ-

ent uses such as finding word analogies or doing trans-

lations.

4 Preliminary results from trials

We have introduced our half-baked projects to over a

hundred students in several workshops. However, with

only three hours for introducing the tools, libraries, and

sample projects, little time is left for deep engagement

or significant enhancements. While most of our projects

have yet to be enhanced by students, a few that have

include:



4 Ken Kahn, Niall Winters

1. Taking a spoken command app and a pose detection

app and creating a drawing program that responds

to spoken commands to change the pen colour and

line thickness. Drawing is controlled by moving one’s

hand in the air.

2. Another student changed the spoken command app

into a spoken version of the classical textual adven-

ture games.

3. Starting with an app that controlled the movement

of a sprite to the left or right by pointing, a young

student added two more directions.

Students were proud of what they created even when

most of their project was constructed by us. In some

cases, with young students (8 to 12 years old) in a 3-

hour workshop, it is hard to imagine how they could

complete a project in any other manner. A few of the

projects were multiple-day efforts by older students (14

to 16 years old) who became very engaged in changing

the seed project to make something that was authenti-

cally theirs.

5 An online synchronous course to enhance the

Don’t Touch Your Face project

We recently completed teaching a course consisting of

13 one-hour Skype sessions. The participating three

young women from non-traditional academic backgrounds

are being supported by the Go Girl Project [10]. They

all had some experience with Scratch [8].

Each session consisted of the girls presenting their

homework followed by one of the authors (Kahn) in-

troducing them to some new technology and concepts

followed by the students doing an exercise. The first

half of the course involved a combination of a general

introduction to AI and an introduction to the new AI

blocks we have added to Snap!.

The Don’t Touch Your Face app was inspired by

donottouchyourface.com which uses a webcam to de-

termine if the user is touching his or her face and if

so issues a warning. Our project relies upon Posenet

[1] which quickly reports the locations of up to 17 face

and part parts. The half-baked version issues a warning

when either wrist (hands are not tracked) comes close

to either eye or the nose (the mouth isn’t tracked).

All the students fine-tuned the threshold for decid-

ing what “close” means as well as the threshold for the

minimum confidence score that a body part’s location is

known by the model. They changed the artwork for the

hands, eyes, and nose. They changed the message when

touching to include how many seconds since the start

of the touch. They added sounds that they recorded to

the app. One student added a mouth, ears, and the rest

Fig. 1 The Don’t Touch Your Face app turned into a ”filters”
app

of the face despite the fact that the system did not re-

port their locations. So she made the mouth’s location

be an offset from where the nose is.

The students discovered that the app had been tuned

to work well only when someone was the appropriate

distance from the camera. Because the threshold was

defined in terms of pixel distance it produced false pos-

itives when one is far from the camera and false nega-

tives when close. The students followed the suggestion

that they compute the threshold as the distance be-

tween the eyes times a tunable parameter.

A surprising outcome happened after they enhanced

the app to display the camera feed in the background.

The sprites for the nose and eyes were displayed on top

of the video. They drew funny eye glasses, earrings, and

noses that became “filters”.

6 Conclusion

We have designed thirty half-baked AI projects in the

Snap! programming system. They were designed to be

explored and enhanced by students. We hope to learn

more about the pedagogical effectiveness of half-baked

AI projects as we continue our research. We encourage

others to make use of our AI learning resources in their

teaching and research. It is open source and Creative

Commons license. Over the coming years we hope to

see many creative remixes of our projects. And we ex-

pect that the students who created these enhancements

will, in the process, have acquired an appreciation and

understanding of AI.

References

1. Google. Posenet, 2020.
2. Google. Teachable machine, 2020.



Learning by enhancing half-baked AI projects 5

3. Brian Harvey, Daniel D Garcia, Tiffany Barnes,
Nathaniel Titterton, Daniel Armendariz, Luke Segars,
Eugene Lemon, Sean Morris, and Josh Paley. Snap!(build
your own blocks). In Proceeding of the 44th ACM technical
symposium on Computer science education, pages 759–759,
2013.

4. Ken Kahn. ecraft2learn ai home page, 2020.
5. Ken Kahn, Calkin Suero Montero, and Christian Voigt.

Steam learning in formal and informal settings via craft
and maker projects. In Proceedings of the 17th ACM Con-

ference on Interaction Design and Children, pages 728–733,
2018.

6. KM Kahn and Niall Winters. Ai programming by chil-
dren. In Proceedings of Constructonism 2018 Conference.
Constructionism 2018, 2018.

7. Chronis Kynigos et al. Half-baked logo microworlds as
boundary objects in integrated design. Informatics in

Education-An International Journal, 6(2):335–359, 2007.
8. John Maloney, Mitchel Resnick, Natalie Rusk, Brian Sil-

verman, and Evelyn Eastmond. The scratch program-
ming language and environment. ACM Transactions on

Computing Education (TOCE), 10(4):1–15, 2010.
9. Mozilla. Web speech api, 2020.

10. University of Oxford. Go girl, 2020.
11. Wikipedia. Kinect, 2020.


